Defne Bayık
Hande Gazey

CS-112 WEEK 2 (Feb. 18-22, 2008)
Topics Covered

1. Call by Value

2. Call by Reference

3. Passing to methods

4. Returning array by methods

5. Selection Sorting

6. Linear Search

7. Multidimensional array

8. Introduction to Classes and Objects

Call by Value:
Example:

public static void swap(int n1, int n2) {

int temp=n1;

n1=n2;

n2=temp;

}

Method invocation

Main

int x=10, y=5;

swap(x,y);

display(x,y) ;

expected results : x=5 and y=10

actual results: x=10 and y=5

Call by value: The reason for that is call by value variables. Stay in method and are not sent to main n1, n2, temp are local variables for swap method
Call by Reference:

Example:
public static void m(int number, int

[] numbers){

int x = 1;

int [] y = new int [10];

[image: image1]
m(x,y);

number = 1000;

numbers[0] = 555;

Main

int x = 1;

int [] y = new int [10];

m(x,y);

System.out.println (“ x: “ + x);

System.out.println (“ y[0]: “ + y[0]);

expected result : x=1, y[0]=555

actual result : x=1, y[0]=555
Call by reference: pass the reference is only for arrays, we pass the reference and change array locations/parameters. When we are done with them, they will disappear from the main memory.

There are two types of memory:

Stack and Heap

Stack concept: When we are done with the information and the methods, they are erased from main memory.

Heap concept: Special memory used for storage allocation for arrays.

Passing Arrays to Methods:
· Linear Search

· Algorithm Complexity

public static int linearSearch(int[] list, int key){
// return the index location of “key” if // it does not exist in array return -1

int r=-1;
for (int i=0; i<list.length && r== -1; i++){

if(key==list[i])

r=i;

}

return r;

}

[image: image6.emf]

Sorting in D escending Order

[image: image7.emf]

Sorting Ascending Order

Array 

 R everse Array

[image: image2]

[image: image3]

[image: image4]
Complexity of Algorithms:
number of

compression= 1/n + 2/n … + n/n

= (1 + 2 …. + n)/n = n(n+1)/2n = (n+1)/2

if n is a very large number ~= n

Selection Sort:

ascending order = increasing order

descending order = decreasing order

Example:

[image: image5]
currentMaxIndex = j;

}

}

// swap list[i] with currentMax

if (currentMaxIndex != i){

list[currentMaxIndex] = list[i];

}

 }

}

Return an Array From a Method:

public static int[] reverse(int[] list){

int[] reverse = new int [list.length];

for (int i=0; i < list.length; i++){

reverse[list.length-i-1]=list[i];

}

return reverse;

}

Two Dimensional Arrays:
dataType [][] arrayRefVariable;

int [][] matrix;

int matrix [][]; (not preferable

matrix = new int [5][5];
int [][] matrix1 = new int [5][6];

Initializing a matrix with random values

for (int row = 0; row < matrix.length; row++){

for (int column = 0; column < matrix[row].length;
column++){

matrix [row] [column] = (int) (Math.random() * 100);

}

}

Initialization using an initialization list:

int [] [] = { {1, 2, 3},

 { 4, 5, 6},

 { 7, 8, 9},

{ 10, 11, 12}

 };

Returning a multidimensional array

public static double [] [] corner (double [] [] a, int size) {

double [] [] temp = new double [size] [size];

int row, column;

for (int row = 0; row < size; row++)
{

for (int column = 0; column < size; column++){

temp [row] [column] = a [row] [column];

}

}

return temp;

}

main ()

double [] [] b = corner ();

For arrays, we use call by reference. We pass the location to methods.

The storage location for arrays is the heap.

 corner

a [][]
 temp

 main

 b [][]

 stack

pointer ======> an array of pointers =======> multidimentional array

Ragged arrays

int [] [] triangleArray = { { 1, 2, 3, 4, 5 },

 { 2, 3, 4, 5 },

 { 3, 4, 5 },

 { 4, 5 },

 { 5 }

 };

int [] [] triangleArray = new int [5] [];

triangleArray [0] = new int [5];

triangleArray [1] = new int [4];

triangleArray [2] = new int [3];

triangleArray [3] = new int [2];

triangleArray [4] = new int [1];

Chapter 7

Classes and Objects:
Programming Paradigms (Approaches):

Procedural Programming

Object Oriented Programming

Functional Programming

What is a class?

A class is an encapsulation of data methods.

It is inaccessible and safe.

Example:

class Circle {

double radius;

Circle () = { };//default constructor

Circle (double newRadius){
//constructor

radius = newRadius;

}

double getArea() {

//method

return (radius*radius*Math.PI);

}

}

Another class

main()

Circle myCircle;

myCircle = new Circle();

Circle myCircle = myCircle = new Circle(); // invokes the default method

Circle yourCircle = new Circle (2,0); // invokes the other constructor

double myArea = myCircle.getArea();

double yourArea = yourCircle.getArea(); // invoking methods for objects

Questions:
1. Why does call by value changes the values of the variables?
Because, by call by value local variables are created inside the method and erased from main memory after we finish using that method.

3. How multidimensional arrays are stored in the memory?

A pointer points an array of pointers that is present in the heap memory and each pointer in this array stores the location of one row of the multidimensional array.

5. What should be done to do column wise initiation?

for (int column = 0; column < matrix[0].length; column++)

{

for (int row = 0; row < matrix.length; row++)

{

matrix[row][column]=5;

}

}

2. What are the differences between stack and heap type of memory?

Heap memory is a special storage allocation for arrays. Stack memory contains variables and methods, whereas heap memory stores array elements.

4. What is the meaning of encapsulation?

The user of the class does not need to know how the class is implemented so the details of implementation are encapsulated and hidden from the user. This is known as class encapsulation, this also provides safety.

 Swap()

 n1	 n2	temp

 Main

 x	 y

stack

Memory

Memory

stack

 Main

 x	 y[]

 m()

number

 numbers[]

0

9

pointing the same memory location

heap

formal parameters

passing an array to method syntax

numer of compressions= 5

= 1 + 2 + 3 + 4 + 5 => 1 + 2 + …. + (n-1) = n.(n-1) / 2

assuming that n is very large (n2/2)-(n/2) ~= n2 Big O notation.

public static void selectionSort(double[] list){

for (int I = list.length-1; i >= 1; i--){

// find the maximum in the list [0,…,i]

	double currentMax = list[0];

int currentMaxIndex;

for (int j=1; j <= i; j++){

if (currentMax < list[i]){

currentMax = list[i];

max=4

1

4

5

6

8

9

 5. pass

max=5

1

4

5

6

8

9

 4. pass

max=6

1

5

4

6

8

9

max=8

 3. pass

6

5

4

1

8

9

max=9

 2. pass

6

5

4

8

1

9

 1. pass

9

5

4

8

1

6

method name

object name

yourCircle

radius 2.0

myCircle

 radius 2. 0

 radius 1. 0

5

4 5

3 4 5

2 3 4 5

 1 2 3 4 5

matrix1[0][1] = 5;

0

1

2

3

0 1 2 3 4

��

PAGE
1

